

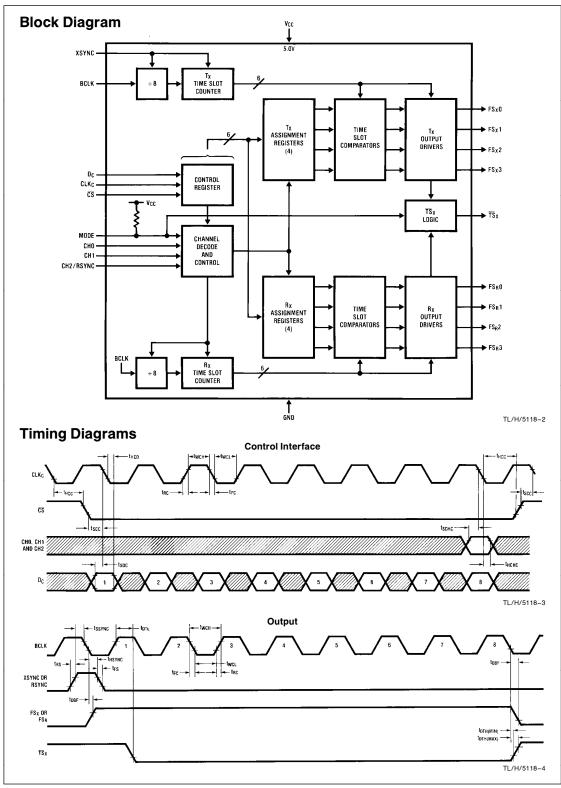
© 1995 National Semiconductor Corporation TL/H/5118

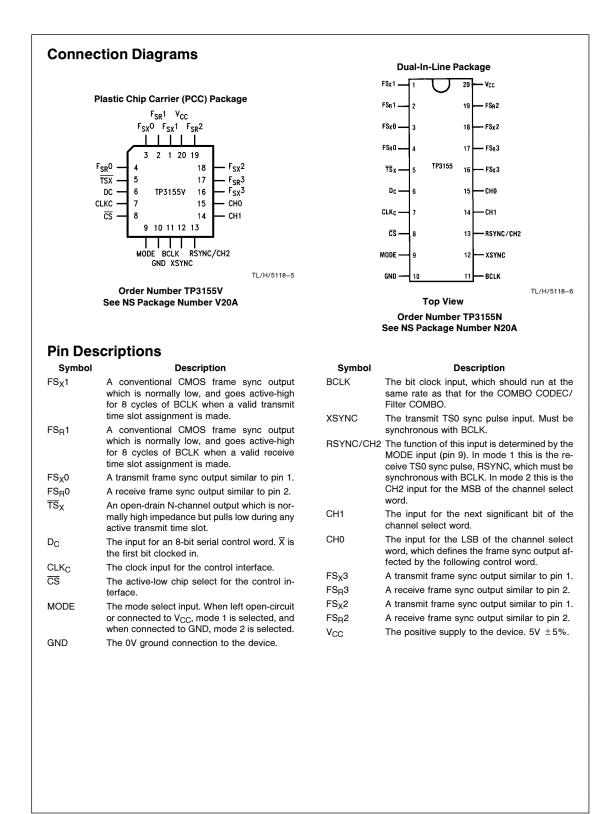
RRD-B30M115/Printed in U. S. A.

Absolute Maxim	num Ratings		
, ,	pecified devices are required, lational Semiconductor Sales	Operating Temperature Range (Ambient)	-25°C to +125°C
Office/Distributors for a	vailability and specifications.	Storage Temperature Range	
V _{CC} Relative to GND	7V	(Ambient)	-65°C to +150°C
Voltage at Any Input or Output	V_{CC} + 0.3V to GND -0.3V	Maximum Lead Temperature (Soldering, 10 seconds)	300°C
		ESD rating to be determined.	

DC Electrical Characteristics

Unless otherwise noted, limits printed in **BOLD** characters are guaranteed for $V_{CC} = 5.0V \pm 5\%$; $T_A = 0^\circ C$ to $+70^\circ C$ by correlation with 100% electrical testing at $T_A = 25^\circ C$. All other limits are assured by correlation with other production tests and/ or product design and characterization. Typicals specified at $V_{CC} = 5.0V$, $T_A = 25^\circ C$.


Parameter	Conditions	Min	Тур	Max	Units
Input Voltage Levels					
V _{IH} , Logic High		2.0			V
V _{IL} , Logic Low				0.7	V
Input Currents					
All Inputs Except MODE	$V_{IL} < V_{IN} < V_{IH}$	- 1		1	μA
MODE	$V_{IN} = 0V$	- 100			μA
Output Voltage Levels					
V _{OH} , Logic High	FS_X and FS_R Outputs, $I_{OH} = 3 \text{ mA}$	2.4			V
V _{OL} , Logic Low	FS_X and FS_R Outputs, $I_{OL} = 5 \text{ mA}$			0.4	V
	$TS_X Output, I_{OL} = 5 mA$			0.4	V
Power Dissipation	BCLK = 2.048 MHz,		1	1.5	mA
Operating Current	All Outputs Open-Circuit				


Timing Specifications

Unless otherwise noted, limits printed in **BOLD** characters are guaranteed for V_{CC} = 5.0V ±5%, T_A = 0°C to +70°C by correlation with 100% electrical testing at T_A = 25°C. All other limits are assured by correlation with other production tests and/ or product design and characterization. Typicals specified at V_{CC} = 5.0V, T_A = 25°C. All timing parameters are measured at V_{OH} = 2.0V and V_{OL} = 0.7V.

See Definitions and Timing Conventions section for test methods information.

Symbol	Parameter	Conditions	Min	Max	Units
t _{PC}	Period of Clock	BCLK, CLK _C	480		ns
t _{WCH}	Width of Clock High	BCLK, CLK _C	160		ns
t _{WCL}	Width of Clock Low	BCLK, CLK _C	160		ns
t _{SDC}	Set-Up Time from D_C to CLK_C		50		
t _{HCD}	Hold Time from CLK_C to D_C		50		ns
tscc	Set-Up Time from \overline{CS} to CLK_C		30		ns
t _{HCC}	Hold Time from CLK_C to \overline{CS}		100		ns
tSCHC	Set-Up Time from Channel Select to CLK_C		50		
t _{HCHC}	Hold Time from Channel Select to CLK_C		50		ns
t _{DBF}	Delay Time from BCLK Low to FS _{X/R} 0–3 High or Low	$C_L = 50 pF$		100	ns
t _{HSYNC}	Hold Time from BCLK to Frame Sync		50		ns
tSSYNC	Set-Up Time from Frame Sync to BCLK		100		ns
t _{DTL}	Delay to TS _X Low	$C_L = 50 pF$		140	ns
t _{DTH}	Delay to TS _X High	$R_L = 1k \text{ to } V_{CC}$	30	140	ns
t _{RC} , t _{FC}	Rise and Fall Time of Clock	BCLK, CLK _C		50	ns

Functional Description

OPERATING MODES

The TP3155 control interface requires an 8-bit serial control word which is compatible with the TP3020/TP3021 and 2910/2911 CODECs. Two bits, \overline{X} and \overline{R} , define which of the two groups of frame sync outputs, FS_X0 to FS_R3 , is affected by the control word, and a 6-bit assignment field specifies the selected time slot, from 0 to 31. A frame sync output is active-high for one time slot, which is always 8 cycles of BCLK. A frame may consist of any number of time slots up to 32. If a timeslot is assigned which is beyond the number of time slots in a frame, the FS_R or FS_R

Two modes of operation are available. Mode 1 is for systems requiring different time slot assignments for the transmit and receive direction of each channel. Mode 1 is selected by leaving pin 9 (MODE) open-circuit or connecting it to V_{CC}. In this case, Pin 13 is the RSYNC input which defines the start of each receive frame, and the four outputs, FS_R0–FS_R3, are assigned with respect to RSYNC. The XSYNC input defines the start of each transmit frame and outputs FS_X0–FS_X3 are assigned with respect to XSYNC. XSYNC may have any phase relationship with RSYNC. Inputs CH0 and CH1 select the channel, from 0 to 3 (see Table Ia).

Mode 2 provides the option of assigning all 8 frame sync outputs with respect to the XSYNC input. Mode 2 is selected by connecting pin 9 (MODE) to GND. This makes the TP3155 TSAC useful for either an 8-channel undirectional controller or for systems in which the transmit and receive directions of each channel are always assigned to the same time slot as the other, i.e., the FS_X and FS_R inputs on the COMBO CODEC/Filter are hard-wired together. In this case, logical selection of the channel to be assigned is made via inputs CH0, CH1 and CH2 (see Table Ib).

POWER-UP INITIALIZATION

During power-up, all frame sync outputs, FS_X0-FS_X3 and FS_R0-FS_R3 , are inhibited and held low. No outputs will go active until a valid time slot assignment is made.

LOADING CONTROL DATA

During the loading of control data, the binary code for the selected channel must be set on inputs CH0 and CH1 (and CH2 in mode 2), see Tables Ia and Ib.

Control data is clocked into the D_C input on the falling edges of CLK_C while $\overline{\mathsf{CS}}$ is low.

A new time slot assignment is transferred to the selected assignment register on the high going transition of \overline{CS} . The new assignment is re-synchronized to the system clock such that the new FS output pulses will start at the next complete valid time slot after the rising edge of \overline{CS} .

TIME SLOT COUNTER OPERATION

At the start of TS0 of each transmit frame, defined by the first falling edge of BCLK after XSYNC goes high, the transmit time slot counter is reset to 000000 and begins to increment once every 8 cycles of BCLK. Each count is compared with the 4 transmit assignment registers and, on finding a match, a frame sync pulse is generated at that FS_X output. Similarly, the first falling edge of BCLK after RSYNC goes high defines the start of receive TS0, and outputs FS_R0–FS_R3 are generated with respect to TS0 when the receive time slot counter matches the appropriate receive assignment register.

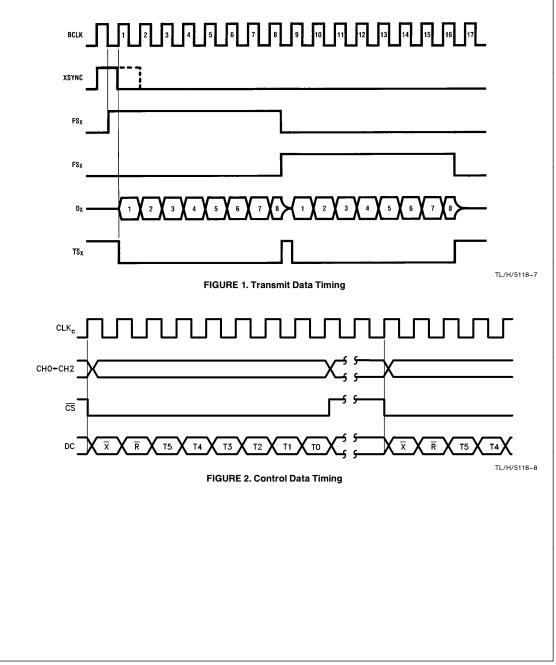
TS_X OUTPUT

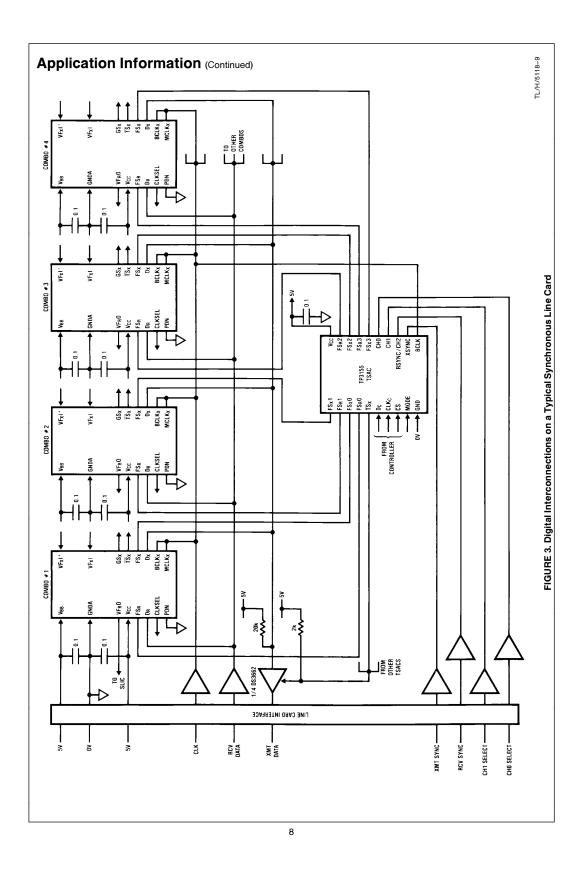
In mode 1 (separate transmit and receive assignments), this output pulls low whenever any FS_X output pulse is being generated. In mode 2, this output pulls low whenever any FS_X or FS_R output is being generated. At all other times it is open-circuit, allowing the TS_X outputs of a number of TSACS to be wire-ANDed together with a common pull-up resistor. This signal can be used to control the TRI-STATE® enable input of a line driver to buffer the transmit PCM bus from the CODEC/Filters to the backplane.

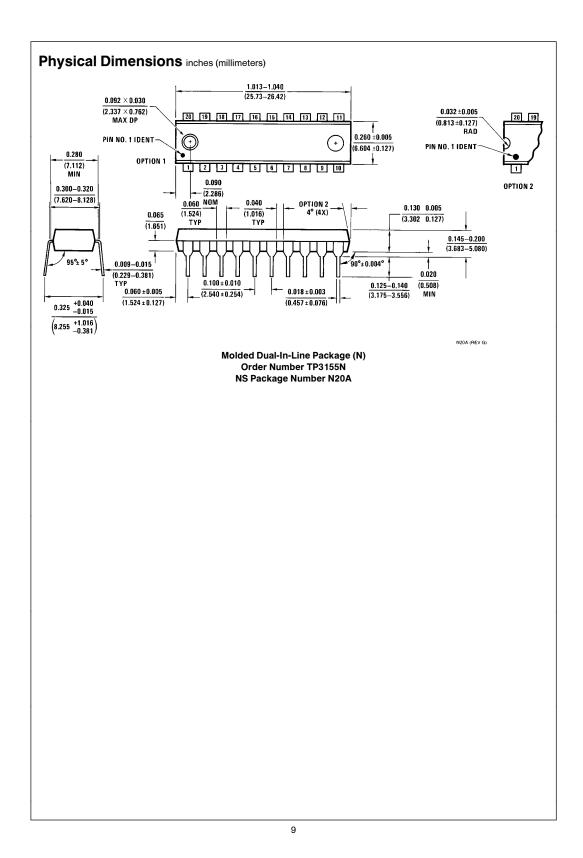
			TABL (TP3020	E la. C 0/TP30				:)	
X		R	T5	T4	Т3		T2	T1	Т0
X is th	δ is the first bit clocked into th Cont			the D _C i ntrol D		orr	nat		
Т5	;	Т4	Т3	T2	T	1	то	Time	e Slot
0		0	0	0	0		0		0
0		0	0	0	0		1		1
0		0	0	0	1		0		2
									:
0		1	1	1	1		0		80
0		1	1	1	1		1	1	81
1		Х	Х	X	X		Х	(No	te 1)
C	H1		CH0		С	har	nnel Se	lected	
	0		0	A	Assign to FS _x 0 and/or FS _R 0				S _R 0
	0 1		A	Assign to FS_x1 and/or FS_R1					
	1		0	A	ssign	to	FS _x 2 a	nd/or F	S _R 2
1		1	Assign to FS _x 3 and/or FS _R 3					S _R 3	
X	R		Action						
0	0	A	ssign time slot to both selected FS_X and FS			d FS _R			
0	1	A	Assign time slot to selected FS _X only						
1	0	A	Assign time slot to selected FS _R only						
1	1	Di	Disable both selected FS_X and FS_R						
TABLE Ib. Control Mode 2									
С	CH2		CH1	СН	CH0 Channel Se		el Sele	cted	
	0		0	0		Assign to FS _X 0		x0	
	0		0	1		Assign to FS _X 1			x1
	0		1	0			Assig	gn to FS	χ2
	0		1	1			Assig	gn to FS	xЗ
	1		0	0			Assig	in to FS	R0
	1		0	1	1 Assign to FS		R1		

1		1	0	Assign to FS _R 2 Assign to FS _R 3
1		1		Assign to FSRS
X	R		4	Action
0	0	1		
0	1	}	Assign time	e slot to selected output
1	0			
1	1		Disable selected output	

Note 1: When T5 = 1, then the appropriate FS_X or FS_R output is inactive.


a a b a r a ti t t t t v IL V IL v r r r	V_{IH} is the d.c. input level above which an input level is guaranteed to appear as a logical one. This parameter is to be measured by performing a function- al test at reduced clock speeds and mominal timing, (i.e. not minimum setup and hold times or output strobes), with he high level of all driving signals set to V _{IH} and maximum supply voltages applied to the device. V_{IL} is the d.c. input level below which an input level is guaranteed to appear to a logical zero to the device.	Fall Time Pulse Width High	where yy represents a mnemonic of the signal whose rise time is being spect- fied. t_{Ryy} is measured from V_{IL} to V_{IH} Fall times are designated as t_{Fy} where yy represents a mnemonic of the signal whose fall time is being spect- fied. t_{Fyy} is measured from V_{IH} to V_{IL} The high pulse width is designated at t_{WzzH} , where zz represents the mne- monic of the input or output sign
b a r a tt t t v t a r r r r r r r r	be measured by performing a function- al test at reduced clock speeds and nominal timing, (i.e. not minimum setup and hold times or output strobes), with he high level of all driving signals set o $V_{\rm IH}$ and maximum supply voltages applied to the device. $V_{\rm IL}$ is the d.c. input level below which an input level is guaranteed to appear		Fall times are designated as t_{Fy} where yy represents a mnemonic of the signal whose fall time is being specified. t_{Fyy} is measured from V_{IH} to V_{IL} . The high pulse width is designated at t_{WzzH} , where zz represents the mnemonic specified.
ti tv V _{IL} V a a r. r. r.	he high level of all driving signals set o V_{IH} and maximum supply voltages applied to the device. V_{IL} is the d.c. input level below which an input level is guaranteed to appear	Pulse Width High	The high pulse width is designated a t_{WzzH} , where zz represents the model.
a a r. n	an input level is guaranteed to appear		
n	as a logical zero to the device. This pa-		whose pulse width is being specifie High pulse widths are measured fro $V_{\rm IH}$ to $V_{\rm IH}.$
	ameter is measured in the same man- ner as V_{IH} but with all driving signal low evels set to V_{IL} and minimum supply voltages applied to the device.	Pulse Width Low	The low pulse width is designated a t _{WzzL} , where zz represents the mn monic of the input or output sign whose pulse width is being specifie
v	/ _{OH} is the minimum d.c. output level to which an output placed in a logical one state will converge when loaded at the maximum specified load current.	Setup Time	Low pulse widths are measured fro V_{IL} to V_{IL} . Setup times are designated as t_{Swwo}
V _{OL} V v s	I_{OL} is the maximum d.c. output level to which an output placed in a logical zero state will converge when loaded at the naximum specified load current.		where ww represents the mnemonic the input signal whose setup time is b ing specified relative to a clock strobe input represented by mnemon xx. Setup times are measured from th
-	The threshold region is the range of in- out voltages between V _{IL} and V _{IH} .	Hold Time	ww Valid to xx Invalid. Hold times are designated as t _{Hxxw}
ik V d	A signal is Valid if it is in one of the valid ogic states, (i.e. above V_{IH} or below V_{IL}). In timing specifications, a signal is deemed valid at the instant it enters a valid state.		where ww represents the mnemonic the input signal whose hold time is b ing specified relative to a clock strobe input represented by mnemon xx. Hold times are measured from
lo c ir lı	A signal is Invalid if it is not in a valid ogic state, i.e. when it is in the threshold region between V_{IL} and V_{IH} . In timng specifications, a signal is deemed nvalid at the instant it enters the hreshold region.	Delay Time	Valid to ww Invalid. Delay times are designated a t _{Dxxyy[H L]} , where xx represents th mnemonic of the input reference sign and yy represents the mnemonic of th output signal whose timing is bein
TIMING CONVENTIO	DNS		specified relative to xx. The mnemor may optionally be terminated by an
For the purposes of conventions apply:	this timing specification the following		or L to specify the high going or lo going transition of the output sign
Input Signals A	All input signals may be characterized as: VL = 0.4V, VH = 2.4V, t_R < 10 ns, $_F <$ 10ns.		Maximum delay times are measure from xx Valid to yy Valid. Minimum d lay times are measured from xx Valid
a n	The period of clock signal is designated as t_{Pxx} where xx represents the mne- nonic of the clock signal being speci- ied.		yy Invalid. This parameter is tested u der the load conditions specified in th Conditions column of the Timing Spec fications section of this data sheet.


Applications Information


A combination of the TP3155 TSAC and any CODEC/Filter COMBO from the TP3052/3/4/7 or TP3064/7 series will result in data timing as shown in *Figure 1*. Although the FS_x output pulse goes high before BCLK goes high, the D_x output of the combo remains in the TRI-STATE mode until both are high. The eight bit period is shortened to prevent a bus clash, just as it is on the TP3020/1 CODECs.

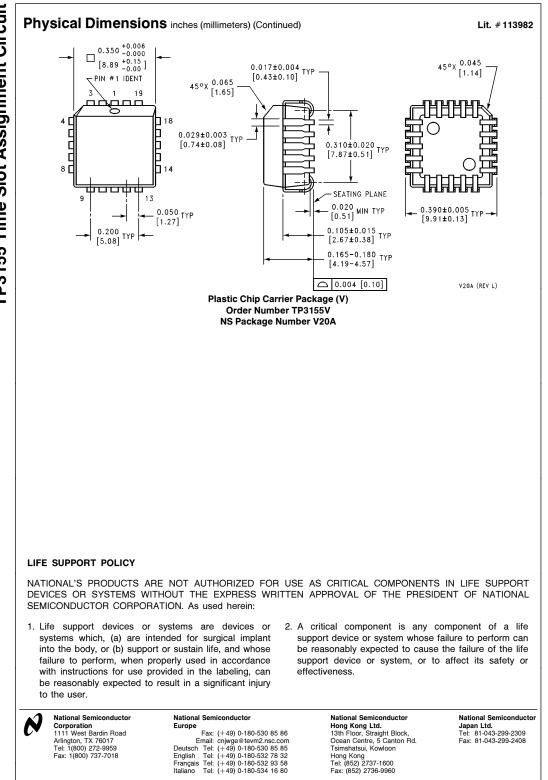

Alternatively, eight full-length bits can be obtained by inverting the BCLK to the combo devices, thereby aligning rising edges of BCLK and ${\sf FS}_{X/R}.$

Figure 2 shows typical timing for the control data interface. *Figure 3* shows the digital interconnections of a typical line card application.

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications